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Abstract—Literature on fingerprint restoration algorithms firmly advocates exploiting contextual information such as ridge
orientation field, ridge spacing, and ridge frequency to recover ridge details in fingerprint regions with poor quality ridge
structure. However, most state-of-the-art convolutional neural network based fingerprint restoration models exploit spatial
context only through convolution operations. Motivated by this observation, this paper introduces a novel context-aware
fingerprint restoration model: context-aware GAN (CA-GAN). CA-GAN is explicitly regularized to learn spatial context
by ensuring that the model not only performs fingerprint restoration but also accurately predicts the correct spatial
arrangement of randomly arranged fingerprint patches. Experimental results establish better fingerprint restoration ability
of CA-GAN compared to the state-of-the-art.

Index Terms—Fingerprints, Image Restoration, Biometrics.

Fig. 1. Sample noisy fingerprints used in this research. The first
two fingerprint samples are latent fingerprints taken from [1]. The last
two samples are live-scan fingerprints of the rural Indian population
taken from the rural Indian fingerprint database [2]. Latent fingerprints
possess smudged ridge patterns, while rural Indian fingerprints have
missing ridge details due to scars and warts and poor ridge-valley
clarity due to dry or wet fingerprints.

I. INTRODUCTION AND RELATED WORK

Fingerprints are among the most accurate and reliable biometric
traits, which allows its applications in several domains, including
digital transactions, criminal identification, and access control [3]–
[7]. However, heavy noise is observed for fingerprints originating
from a crime scene, commonly called latent fingerprints and
fingerprints originating from individuals with poor skin condition
around fingertips due to excessive manual work, such as fingerprints
of the rural Indian population (see Figure 1). As a result, incorrect
ridge features are extracted around noisy fingerprint regions, and
the fingerprint recognition performance obtained by an automated
fingerprint recognition (AFRS) is significantly degraded for such
fingerprints [8]. To address this limitation of AFRS, a fingerprint
restoration algorithm is designed to provide better quality fingerprints
by predicting missing ridge-valley information and enhancing ridge-
valley contrast. Subsequently, improved ridge feature extraction
and fingerprint recognition performance is obtained on fingerprints
generated using a fingerprint restoration model. Motivated by the
contribution of a fingerprint restoration model to improve fingerprint
recognition of noisy fingerprints, this paper presents context-aware
GAN (CA-GAN), a novel method for fingerprint restoration.

Several classical image processing based methods for fingerprint
restoration advocate exploiting contextual information such as ridge
frequency, ridge spacing, and ridge orientations to recover missing
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Fig. 2. Schematic diagram of the proposed CA-GAN. To enforce
learning of spatial context, CA-GAN exploits multi-task learning. An
additional jigsaw classifier is introduced at the last layer. The jigsaw
classifier is trained to predict the correct permutation index indicating
the relative ordering of fingerprint image patches. As a result, CA-GAN
is trained to minimize a weighted combination fingerprint restoration
(L𝑟𝑒𝑠) and jigsaw classification loss (L 𝑗𝑖𝑔).

ridge characteristics in distorted regions [9]–[14]. However, recent
deep learning based approaches for fingerprint restoration utilize
encoder-decoder based models [15]–[21]. A rigorous survey dis-
cussing approaches for fingerprint restoration methods is provided in
[22]. However, the motivation for this paper arises from the observation
that most deep learning based approaches for fingerprint restoration
[15]–[21] rely only on convolution operations to understand the
spatial context in a fingerprint image and explicit introduction of an
additional task that mandates learning of spatial context can further
improve the restoration performance. Recently, solving jigsaw puzzles
has emerged as a highly useful self-supervised task to learn the spatial
correlation between image patches and improve the generalization
ability of a deep model [23].

Research Contributions: We introduce rearrangement of jigsaw
puzzles as an effective task for fingerprint restoration models to
enforce learning of spatial context in fingerprint images. To the best
of our knowledge, CA-GAN is the introductory research that uses the
principle of learning spatial context through solving jigsaw puzzles
to boost the generalization ability of a fingerprint restoration model.
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TABLE 1. Comparison of
average fingerprint quality
scores achieved on [2] by
CA-GAN and state-of-the-
art.

Restoration
Algorithm

Quality
Score
(↓)

Raw Image 2.94
Hong et al. [9] 2.05
DeconvNet [15] 1.95
Cycle-GAN [16] 1.76
MU-GAN [21] 1.33
FP-E-GAN [18] 1.31
CDC-GAN [3] 1.30
DU-GAN [19] 1.26
CA-GAN 1.29

TABLE 2. Comparison of EER
achieved on [2] by CA-GAN and
state-of-the-art.

Restoration
Algorithm

Bozorth
(↓)

MCC
(↓)

Raw Image 16.36 13.23
Cycle-GAN [16] 29.52 27.96
Hong et al. [9] 11.01 11.46
DeConvNet [15] 10.93 10.86
FP-E-GAN [18] 7.30 5.96
CDC-GAN [3] 5.89 5.38
DU-GAN [19] 7.13 5.13
MU-GAN [21] 7.46 5.06
CA-GAN 5.64 4.94

II. PROPOSED METHOD

This section introduces context-aware GAN (CA-GAN), a multi-
task learning based fingerprint restoration model that given a noisy
fingerprint image, is trained to generate a fingerprint with improved
clarity of ridge structure. As an additional task, the model is trained
to learn the spatial context in fingerprint images by solving jigsaw
puzzles. Figure 2 presents the flowchart of CA-GAN. We now describe
the task of solving a jigsaw puzzle. To create a jigsaw puzzle, the
fingerprint image is decomposed into a grid of 3×3 patches. Although
9! random permutations exist to arrange these patches, however, to
ensure no ambiguity in the task, a permutation set is defined, which
contains a total of 30 elements where each element defines a unique
permutation [23]. The choice of these 30 permutations is made by
using a hamming distance based greedy algorithm as defined in
[24]. Given a set of input fingerprint image patches, the model has
to predict the correct permutation order. Subsequently, solving the
jigsaw puzzle is formalized as a 30-class classification task.

Let us assume that 𝜙 and 𝛿 denote the respective parameters till
the second last layer and the last layer of the fingerprint restoration
model. To solve a given jigsaw puzzle, a new classification branch
characterized by model parameters 𝜁 is introduced to classify the
correct order of a given permutation of image patches as one of the
30 classes. 𝑓 denotes the deep model. The loss function optimized
by CA-GAN is as follows:

arg min
𝜙,𝛿,𝜁

𝑁∑︁
𝑖=1

L𝑟𝑒𝑠 ( 𝑓 (𝑥𝑖 |𝜙, 𝛿), 𝑦𝑖) +
𝐾∑︁
𝑘=1

L 𝑗𝑖𝑔 ( 𝑓 (𝑧𝑘 |𝜙, 𝜁), 𝑙𝑘)

𝐿𝑟𝑒𝑠 ensures that reconstructed fingerprint 𝑓 (𝑥𝑖 |𝜙, 𝛿) generated
for a given input fingerprint 𝑥𝑖 is close to the ground truth, 𝑦𝑖 . L 𝑗𝑖𝑔

is a cross-entropy loss which ensures that predicted permutation
label 𝑓 (𝑧𝑘 |𝜙, 𝜁) for input grid of patches (𝑧𝑘 is close to the true
permutation label, 𝑙𝑘 . 𝑁 and 𝐾 denote the number of labelled training
images and the number of grids with reordered patches, respectively.
Backbone network architecture and 𝐿𝑟𝑒𝑠 are taken from [18].

Implementation Details: CA-GAN is trained on synthetically
distorted fingerprints and the corresponding restored fingerprints
[25]. The training data is prepared as per the guidelines provided in
[18], [26]. CA-GAN is trained on a system comprising E5-2620v4
CPU and four NVIDIA GTX 1080 Ti GPUs. Each GPU has 11 GB
RAM. CA-GAN is implemented using PyTorch, v1.11.0 and exploits
Adam optimizer with a learning rate of 0.0002.

TABLE 3. Comparison of
average fingerprint quality
scores achieved on [1] by
CA-GAN and state-of-the-
art.

Restoration
Algorithm

Quality
Score
(↓)

Raw Image 4.96
Cycle-GAN [16] 4.90
DeConvNet [15] 4.09
DU-GAN [19] 3.01
MU-GAN [21] 1.48
CDC-GAN [3] 2.38
CA-GAN 2.03

TABLE 4. Comparison of rank-50 ac-
curacy achieved on [1] by CA-GAN
and state-of-the-art.

Restoration
Algorithm

Bozorth
(↑)

MCC
(↑)

Raw Image 5.45 6.06
Cycle-GAN [16] 6.29 4.65
DeConvNet [15] 14.02 14.27
Svoboda et al. [27] NA 22.36
DU-GAN [19] 23.16 27.21
MU-GAN [21] 25.09 28.61
CDC-GAN [3] 28.00 33.09
CA-GAN 28.24 34.59

Input DeConvNetCycle-GAN FP-E-GAN CDC-GAN DU-GAN MU-GAN CA-GAN

Fig. 3. Sample restored rural Indian fingerprints obtained using state-
of-the-art and CA-GAN. Smoothest fingerprints with the best ridge-
valley clarity are generated using the proposed CA-GAN.

III. RESULTS AND ANALYSIS

A. Restoration of Fingerprints of Rural Indian Population

We initiate the analysis of fingerprint restoration performance
on challenging rural Indian fingerprint dataset [2]. This dataset
contains 1625 challenging fingerprints collected using an optical
sensor from volunteers living in the rural India [2]. The restored
fingerprints obtained using the proposed CA-GAN have superior
ridge-valley clarity and smoother ridge structure (see Figure 3). On
quantitative analysis, we find that better fingerprint quality (see Table
1) and comparison results (quantified by average equal error rate
(EER)) for both Bozorth [28] and MCC matcher [29]–[31] (see
Table 2) is obtained on restored fingerprints, which demonstrates the
effectiveness of exploiting spatial context by solving jigsaw puzzles.
Fingerprint quality results are illustrated through histogram while the
comparison scores are presented through the detection error trade-
off (DET) curves. All the plots corresponding to the rural Indian
fingerprints [2] are plotted in Figure 4.

B. Restoration of Latent Fingerprints

Next experiment assesses CA-GAN on challenging latent fin-
gerprints obtained from the IIITD-MOLF dataset [1]. This dataset
constitutes 4400 challenging latent fingerprints that are matched across
a gallery of live-scan fingerprints obtained using the Lumidigm
sensor [1]. Sample restored fingerprints obtained for input latent
fingerprints of IIITD-MOLF dataset [1] are presented in Figure
5. We observe that while state-of-the-art generates spurious ridge
structure in smudged fingerprint regions, CA-GAN, on the other
hand, successfully predicts ridge details in such distorted regions.
Subsequently, CA-GAN generates superior quality fingerprints (see
Table 3) that obtain better matching performance (see Table 4). For
latent fingerprints, the comparison performance is presented through
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Fig. 4. (a) Fingerprint quality values obtained on the rural Indian fingerprints [2] and the DET curves corresponding to fingerprint comparison
tools (b) Bozorth and (c) MCC.

Input DeConvNet DU-GAN MU-GAN CDC-GAN CA-GAN

Fig. 5. Sample restored fingerprints obtained for latent fingerprints.

TABLE 5. Comparison of av-
erage fingerprint quality values
obtained for jigsaw puzzle ver-
sus standard self-supervised
tasks.

Restoration
Algorithm

Quality
Score
(↓)

Baseline 1.31
Location 1.30
Rotation 1.37
CA-GAN 1.29

TABLE 6. Average EER obtained for
jigsaw puzzle versus standard self-
supervised tasks.

Restoration
Algorithm

Bozorth
(↓)

MCC
(↓)

Baseline 7.30 5.96
Location 6.60 5.88
Rotation 6.15 5.48
CA-GAN 5.64 4.94

cumulative matching characteristics (CMC) curves. All the plots
corresponding to latent fingerprints [1] are presented in Figure 6.

C. Capability to Preserve Ridge Details

Next, we work towards quantifying the capability of CA-GAN
to preserve ridge details. For this experiment, we simulate poor
quality fingerprints by adding noise into good quality fingerprints
[26]. Sample restored fingerprints generated using CA-GAN for given
simulated poor quality fingerprints are illustrated in Figure 7 (a).
Groundtruth is obtained by binarizing the good quality fingerprint
using NBIS [28]. Later, SSIM is computed among the target binarized
fingerprint and the restored fingerprint achieved using CA-GAN. High
SSIM scores are obtained, which demonstrate the ability of CA-GAN
to retain ridge structure while restoring it.

D. Comparison with Standard Self-supervision tasks

Lastly, to demonstrate the significance of learning spatial context
by solving jigsaw puzzles. For this, we compare the restoration ability
obtained after introducing the self-supervised task of solving a jigsaw
puzzle [23] versus two standard self-supervised tasks: prediction of
rotation [32] and location [33]. Results reveal that learning spatial
context through solving jigsaw puzzles turns out to be more effective

than learning to predict rotation or location as it renders better
fingerprint quality scores(see Table 5) and matching performance
(see Table 6). Sample restored fingerprints are presented in Figure 7
(b) while histogram of quality scores and DET curves are presented
in Figure 8.

IV. CONCLUSION

This paper introduces solving jigsaw puzzles to learn the spatial
context in fingerprint images. Improved fingerprint recognition results
are obtained on fingerprints reconstructed by CA-GAN, which
confirms that learning of spatial context improves the generalization
ability of the fingerprint restoration model. In the future, learning
of jigsaw puzzles can be explored to improve the generalizability
of deep learning based presentation attack detectors and region of
interest segmentation networks.
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Fig. 6. (a) Fingerprint quality values obtained on latent fingerprints [1] and the CMC curves corresponding to fingerprint comparison tools (b)
Bozorth and (c) MCC.

Input CA-GANGround Truth

SSIM: 91.3 

SSIM: 84.6 

(a)

Input Location Rotation CA-GAN

(b)

Fig. 7. Sample cases demonstrating (a) the ridge preservation ability of CA-GAN (b) superior performance of CA-GAN by solving jigsaw puzzles
compared to classical self-supervised tasks of rotation and location prediction.
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Fig. 8. (a) Fingerprint quality values obtained for different choices of self-supervised tasks and the DET curves corresponding to fingerprint
comparison tools (b) Bozorth and (c) MCC. Learning spatial context via solving jigsaw puzzles turns out to be the most effective choice.

[14] R. Gupta, M. Khari, D. Gupta, and R. G. Crespo, “Fingerprint Image Enhancement
and Reconstruction using the Orientation and Phase Reconstruction,” Information
Sciences, vol. 530, pp. 201 – 218, 2020.

[15] P. Schuch, S. Schulz, and C. Busch, “De-Convolutional Auto-encoder for
Enhancement of Fingerprint Samples,” in Proc. International Conference on Image
Processing Theory, Tools and Applications (IPTA), 2016, pp. 1 – 7.

[16] D. Karabulut, P. Tertychnyi, H. S. Arslan, C. Ozcinar, K. Nasrollahi, J. Valls,
J. Vilaseca, T. B. Moeslund, and G. Anbarjafari, “Cycle-Consistent Generative
Adversarial Neural Networks based Low Quality Fingerprint Enhancement,”
Multimedia Tools and Applications, vol. 79, no. 25, pp. 18 569 – 18 589, 2020.

[17] I. Joshi, R. Kothari, A. Utkarsh, V. K. Kurmi, A. Dantcheva, S. Dutta Roy, and P. K.
Kalra, “Explainable Fingerprint ROI Segmentation using Monte Carlo Dropout,” in
IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW),
2021, pp. 60 – 69.

[18] I. Joshi, A. Anand, M. Vatsa, R. Singh, S. Dutta Roy, and P. Kalra, “Latent Fingerprint
Enhancement using Generative Adversarial Networks,” in IEEE Winter Conference
on Applications of Computer Vision (WACV), 2019, pp. 895 – 903.

[19] I. Joshi, A. Utkarsh, R. Kothari, V. K. Kurmi, A. Dantcheva, S. Dutta Roy, and P. K.
Kalra, “Data Uncertainty Guided Noise-Aware Preprocessing of Fingerprints,” in
International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1 – 8.

[20] P. Qian, A. Li, and M. Liu, “Latent Fingerprint Enhancement Based on DenseUNet,”
in Proc. International Conference on Biometrics (ICB), 2019, pp. 1 – 6.

[21] I. Joshi, A. Utkarsh, R. Kothari, V. K. Kurmi, , A. Dantcheva, S. Dutta Roy, and
P. K. Kalra, “On Estimating Uncertainty of Fingerprint Enhancement Models,” in
Digital Image Enhancement and Reconstruction, 2022 (accepted).

[22] P. Schuch, S. Schulz, and C. Busch, “Survey on the Impact of Fingerprint Image
Enhancement,” IET Biometrics, pp. 102 – 115, 2017.

[23] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Domain
Generalization by Solving Jigsaw Puzzles,” in Proc. IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2229 – 2238.

[24] M. Noroozi and P. Favaro, “Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles,” in Proc. European conference on computer vision
(ECCV), 2016, pp. 69 – 84.

[25] I. Joshi, M. Grimmer, C. Rathgeb, C. Busch, F. Bremond, and A. Dantcheva,
“Synthetic Data in Human Analysis: A Survey,” arXiv preprint arXiv:2208.09191,
2022.

[26] I. Joshi, A. Anand, S. Dutta Roy, and P. K. Kalra, “On Training Generative
Adversarial Network for Enhancement of Latent Fingerprints,” in AI and Deep
Learning in Biometric Security, 2021, pp. 51 – 79.

[27] J. Svoboda, F. Monti, and M. M. Bronstein, “Generative Convolutional Networks for
Latent Fingerprint Reconstruction,” in Proc. IEEE International Joint Conference
on Biometrics (IJCB), 2017, pp. 429 – 436.

[28] NIST. NBIS- NIST Biometric Image Software. http://biometrics.idealtest.org/.
[29] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia Cylinder-Code: A New

Representation and Matching Technique for Fingerprint Recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp.
2128 – 2141, 2010.

[30] R. Cappelli, M. Ferrara, and D. Maltoni, “Fingerprint Indexing Based on Minutia
Cylinder-Code,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 5, pp. 1051 – 1057, 2010.

[31] M. Ferrara, D. Maltoni, and R. Cappelli, “Noninvertible Minutia Cylinder-Code
Representation,” IEEE Transactions on Information Forensics and Security, vol. 7,
no. 6, pp. 1727 – 1737, 2012.

[32] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised Representation Learning
by Predicting Image Rotations,” in Proc. International Conference on Learning
Representations (ICLR), 2018.

[33] Y. Sun, E. Tzeng, T. Darrell, and A. A. Efros, “Unsupervised Domain Adaptation
Through Self-supervision,” arXiv preprint arXiv:1909.11825, 2019.


