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Abstract State-of-the-art fingerprint recognition systems perform far from satisfac-
tory on noisy fingerprints. A fingerprint denoising algorithm is designed to eliminate
noise from the input fingerprint and output a fingerprint image with improved clar-
ity of ridges and valleys. To alleviate the unavailability of annotated data to train
the fingerprint denoising model, state-of-the-art fingerprint denoising models gener-
ate synthetically distorted fingerprints and train the fingerprint denoising model on
the synthetic data. However, a visible domain shift exists between synthetic training
data and the real-world test data. Subsequently, state-of-the-art fingerprint denoising
models suffer from poor generalization. To counter this drawback of state-of-the-art,
this research proposes to align the synthetic and real fingerprint domains. Experi-
ments conducted on publicly available rural Indian fingerprint demonstrate that after
the proposed domain alignment, equal error rate improves from 7.30 to 6.10 on Bo-
zorth matcher and 5.96 to 5.31 on minutiae cylinder code (MCC) matcher. Similar
improved fingerprint recognition results are obtained for IIITD-MOLF and private
rural fingerprints database as well.

Keywords Fingerprint enhancement · Unsupervised domain adaptation · Self-
supervision · Latent fingerprints

1 Introduction

Fingerprint recognition systems are among the most popular biometrics trait. These
are frequently exploited in applications including border security, access control, and
law enforcement. However, the performance of fingerprint recognition systems on
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(a)

(b)

Fig. 1 (a) Sample examples of (real) fingerprints from the IIITD- MOLF Database [49] (top row), and
the Rural Indian Fingerprint Database [44] (bottom row) (b) Sample training samples of synthetically dis-
torted fingerprints. There is a visible domain shift between the synthetically distorted and real distorted
fingerprints. Subsequently, existing fingerprint denoising models trained on the synthetic data lack gener-
alization to real-world distorted fingerprints.

low quality fingerprints obtained for subjects involved in a high amount of manual
labor and aged subjects is unsatisfactory [60,44,56]. Similarly, the fingerprint recog-
nition performance on fingerprints obtained from a crime scene (latent fingerprints)
is also poor. The challenge in poor quality live scan fingerprints arises due to the
presence of scars, warts, dry or wet fingertips leading to unclear or thick ridges [22].
On the other hand, a latent fingerprint is characterized by smudged ridge patterns and
complex backgrounds with lines, text, stains, and sometimes overlapping fingerprints
(See Figure 1 (a)).

A fingerprint denoising model is designed to eliminate noise from a poor quality
input fingerprint image and generate a higher quality fingerprint image with an en-
hanced ridge structure. Subsequently, improving the fingerprint comparison scores.
State-of-the-art fingerprint denoising models are supervised models that are trained
on pixel-level annotated data of poor quality distorted and the corresponding good
quality enhanced image. However, there is no publicly available annotated training
set available to train a fingerprint denoising model. To address this limitation on the
availability of a pixel-level annotated dataset, researchers train the model on the syn-
thetically distorted fingerprints instead [64,45]. The synthetically distorted finger-
prints are generated by introducing different distortions such as Gaussian blurring,
lines, blending with varying textures [23,35] (See Figure 1 (b)). However, as also
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illustrated in Figure 1, there is a visible domain shift in real low quality and synthet-
ically distorted fingerprints. As a result, state-of-the-art fingerprint denoising models
are limited in their ability to generalize to real low quality fingerprints.

1.1 Research Contributions

To address this limitation of state-of-the-art fingerprint denoising models, this pa-
per formulates fingerprint denoising as an unsupervised domain adaptation problem
and proposes to align the source and target domains, i.e., synthetically distorted and
real low quality fingerprints. In particular, we introduce two auxiliary tasks of pre-
dicting rotation and location for both annotated synthetically distorted fingerprints
(source domain) and unannotated real poor quality fingerprints (target domain). The
model jointly optimizes learning of fingerprint denoising as well the two auxiliary
tasks. The introduction of these auxiliary tasks simultaneously on both the domains
helps to align the representations learnt for both the domains and improve fingerprint
denoising performance on the real fingerprints. The contributions of this paper are
summarized as below:

– Impact of domain alignment of synthetic and real distorted fingerprints is studied.
In particular, two auxiliary tasks of rotation and location prediction are introduced
to bridge the domain gap between real and synthetic fingerprints.

– To the best of our knowledge, no study so far in the fingerprint denoising literature
has exploited multi-task learning to align synthetic and real fingerprint domains.

– The proposed DA-GAN and the most recent fingerprint denoising models are
thoroughly compared. Additionally, a comparison between the proposed DA-
GAN and state-of-the-art fingerprint denoising models based on generative ad-
versarial networks (GAN) is done.

– Ablation study illustrating the contribution of each auxiliary task in improving
the fingerprint denoising performance is provided.

– A comprehensive analysis of successful and challenging cases for the proposed
DA-GAN is presented.

– Improved fingerprint recognition performance on challenging latent fingerprints
and fingerprints of the rural Indian population signifies improved generalization
ability of the proposed DA-GAN.

1.2 Organization of Paper

Given the wide applications of fingerprint recognition technology, the main contribu-
tion of this research is to enhance the quality of noisy fingerprints and subsequently
improve its recognition performance. Towards this, Section 2 provides a summary of
the most recent developments in the field. Section 3 introduces the proposed domain
alignment technique for fingerprint denoising, while Section 4 elaborates implemen-
tation details. Section 5 provides details on the experimental protocols. In Section 6,
the effectiveness of the proposed DA-GAN is evaluated in comparison to the most
recent fingerprint denoising models. Section 7 delves into providing insights on the
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proposed model through ablation studies and discussions on challenging cases. Fi-
nally, Section 8 concludes the research findings and discusses future scope.

2 Related Work

2.1 Fingerprint Denoising

2.1.1 Denoising using Classical Image Processing Methods

The most widely used classical image processing methods for fingerprint denoising
propose to exploit contextual information in a fingerprint image either using ridge
orientation or ridge continuity. These approaches typically employ filtering in spatial
or frequency domain to predict ridge details in unclear or noisy regions of a finger-
print image [18,62,15,7,53]. Other approaches include using transformation such as
wavelet decomposition [20] and discrete cosine transform [21]. Li et al. [36] propose
denoising of noisy fingerprint regions using nonlocal Cahn–Hilliard equation. Gupta
et al. [16] approximate fingerprint ridge orientation and minutiae density using higher
order polynomial. Availability of reliable contextual information is a key factor to
obtain satisfactory performance using these approaches. However, the extracted con-
textual information is often incorrect for highly noisy fingerprints. As a result, these
approaches often do not generalize for heavily corrupted fingerprint regions observed
in challenging real-world fingerprint samples.

2.1.2 Denoising using Learning based Methods

One of the earliest learning based approaches for fingerprint denoising include dic-
tionary based methods [10,66,6,37,5,54]. These approaches generally create a dic-
tionary of orientation fields of fingerprint ridges. Later, the constructed dictionary is
exploited to approximate fingerprint ridge orientation in fingerprint regions. However,
a key limitation of these approaches arises from the fact that the dictionary of finger-
print ridge orientation is created by computing fingerprint ridge orientations on good
quality fingerprint regions. As a result, these orientation approximation methods do
not generally work well on heavily distorted fingerprints. To address the limitations
of dictionary based fingerprint denoising methods, orientation field prediction models
are introduced [2,46]. These models are trained to predict the orientation field for an
input patch of a fingerprint image. However, in these approaches, although the orien-
tation fields are learnt through an orientation field prediction model, however, Gabor
filtering using the predicted orientations is applied to denoise input fingerprints.

Recent research direction for fingerprint denoising exploits learnable models that
directly output the denoised fingerprint image [48,51,47,55,45] rather than predict-
ing the orientations of fingerprint ridges and applying contextual filtering using a Ga-
bor filter tuned at the predicted orientations. One of the early approaches in this direc-
tion includes the contributions of Schuch et al. [51]. The authors propose an autoen-
coder architecture (DeConvNet) for fingerprint denoising. Similar to [51], Svoboda
et al. [55] also propose an autoencoder model for fingerprint denoising. However,
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Algorithm Reference Approach and Limitation
Classical Image

Processing
Hong et al. [18] Filtering using Gabor filters tuned on local ridge fre-

quency and orientations. Correct contextual information
cannot be extracted from noisy regions due to which the
algorithm gives unsatisfactory performance in noisy re-
gions.

STFT [7] Filtering in Fourier domain. Correct frequency informa-
tion cannot be extracted from noisy regions due to which
the algorithm gives unsatisfactory performance in noisy
regions.

Deep learning
based

approaches

DeConvNet [51] Exploits an auto-encoder network. Generates blurred fin-
gerprints with poor ridge-valley clarity. Suffers from do-
main shift between training and test datasets.

FP-E-GAN [24] A paired image-to-image translation based generative ad-
versarial network. Suffers from domain shift between
training and test datasets.

Svoboda et al.
[55]

An auto-encoder based fingerprint denoising network that
generates spurious ridge patterns in noisy regions. Suffers
from domain shift between training and test datasets.

Cycle-GAN [33] An unpaired image-to-image translation based genera-
tive adversarial network. Fails to preserve ridge details in
noisy regions. Suffers from domain shift between train-
ing and test datasets.

DU-GAN [30] Data uncertainty guided generative adversarial network
for fingerprint denoising. Does not generalize on chal-
lenging latent fingerprints. Suffers from domain shift be-
tween training and test datasets.

MU-GAN[27] Explainable fingerprint denoising model that provides
model uncertainty information. Does not generalize on
challenging latent fingerprints. Suffers from domain shift
between training and test datasets.

DA-GAN (Pro-
posed)

A paired image-to-image translation based generative
model for fingerprint denoising. The model exploits aux-
iliary tasks to address the domain shift between training
and test datasets.

Table 1 A table listing all the fingerprint denoising models investigated and contrasted with the proposed
DA-GAN.

the proposed autoencoder minimizes orientation and gradient between the output de-
noised fingerprints and ground truth. Horapong et al. [19] suggest to identify artifacts
in denoised fingerprint regions by utilizing a spectral autoencoder. Qian et al. [45]
suggest a DenseUnet architecture for denoising fingerprint patches. Interested read-
ers are referred to [52] for a comprehensive survey of fingerprint denoising methods.

Recently, GANs have emerged as state-of-the-art fingerprint denoising models.
Joshi et al. suggest FP-E-GAN, a paired image to image translation GAN [24,23]
to denoise fingerprint images. Karabulut et al. [33] suggest Cycle-GAN [68], an un-
paired image to image translation based solution to fingerprint denoising. Recently,
model uncertainty [29], data uncertainty [30] and channel level attention [32] are
introduced into GANs to design generalizable fingerprint denoising models.

To summarize, we note the drawback of state-of-the-art that all the recent fin-
gerprint denoising approaches that directly output the denoised fingerprint images
are trained on synthetically distorted fingerprints. However, there is a visible domain
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shift between the synthetically distorted and real low quality fingerprints. As a result,
existing fingerprint denoising models suffer from poor generalization on challenging
real-world fingerprint images [28,26,25]. This research proposes to overcome the
domain shift by training a fingerprint denoising model to learn auxiliary tasks.

2.2 Unsupervised Domain Adaptation

To save the effort in human annotations and to promote transferable learning across
domains, unsupervised domain adaptation is introduced. Domain adaptation can be
performed through a variety of techniques explained next. The earliest approaches for
unsupervised domain adaptation include minimization of domain discrepancy. These
approaches minimize the domain discrepancy loss between the target and source im-
age distributions such that the model learns domain-invariant features. Deep Domain
Confusion [59], deep adaptation network [39] and weighted domain adaptation net-
work [65] are some popular unsupervised domain adaptation approaches in this cate-
gory.

Some prominent studies in unsupervised domain adaptation propose to adapt the
domains using a reconstruction based approach. These approaches utilize a secondary
reconstruction task such that the shared representation across source and target do-
mains can be learnt [12,17,50,41,1,8,38]. Another important direction of research in
unsupervised domain adaptation advocates to utilize an adversarial discriminator. Re-
cently, Joshi et al. [31] propose an adversarial learning based domain adaptation for
learning sensor-invariant features for fingerprint segmentation. Adversarial learning
based domain adaptation methods employ a discriminator network to discriminate
between features of source and target domain. This encourages the model to learn
domain invariant features [58,57,40,34,67,61]. For a comprehensive survey on un-
supervised domain adaptation, the interested readers may refer [63].

2.3 Learning with Pseudo-Annotations

Image recognition applications where no or only limited annotations are available,
pseudo-annotations can be generated for the unannotated data. Several studies demon-
strate that learning with pseudo annotations facilitates improved representation learn-
ing. Towards this, Doersch et al. [9] propose to learn context by extracting two
patches and predicting the position of the second patch with respect to the first patch.
Gidaris et al. [14] propose to rotate image at different angles and generate pseudo an-
notations. Pathak et al. [43] propose an image painting based approach to learn con-
text in an image. Ghifary et al. [13] propose a denoising based approach to facilitate
improved representation learning. Motivated by the usefulness of pseudo-annotations
for improved representation learning, this paper exploits pseudo-annotations to train
the fingerprint denoising model to learn two auxiliary tasks, namely rotation and
patch location prediction.



Unsupervised Domain Alignment of Fingerprint Denoising Models using Pseudo Annotations 7

Synthetic
Fingerprints


(Source)

Real
Fingerprints


(Target)

0° 90° 180° 270°

Rotation

0° 90° 180° 270°

(0,0) (0,1) (1,0) (1,1)

Location

(0,0) (0,1) (1,0) (1,1)

Fig. 2 Pseudo-annotations are generated for both source and target datasets for training the auxiliary tasks.
To generate pseudo-annotated data for training the rotation prediction network, input fingerprint image is
rotated at different angles. Likewise, to generate pseudo-annotated data for training the patch location
prediction network, random patches are cropped from the input fingerprint image.

3 Proposed Method

3.1 Problem Formulation

Let Xsrc denotes the distribution of synthetically distorted fingereprints and the cor-
responding pixel-level annotated denoised binarized fingerprints. Xtgt denotes the
distributions of unannotated real fingerprints. Xsrc = {(xsrc, ysrc)} and Xtgt =
{xtgt}. The objective is to learn a fingerprint model that achieves improved finger-
print denoising performance on real fingerprints (Xtgt) by aligning features of syn-
thetic (Xsrc) and real (Xtgt) fingerprints.

3.2 Overview

We formulate fingerprint denoising as a multi-tasking learning based unsupervised
alignment problem such that the fingerprint denoising model is trained to not only
minimize the fingerprint denoising loss but two more additional losses corresponding
to the two tasks auxiliary tasks, namely rotation and patch location prediction. The
joint training of the fingerprint denoising task with two auxiliary tasks common to
both the synthetically distorted (source) and real fingerprints (target) enforces domain
alignment on the features learnt by a backbone fingerprint denoising model. This, in
turn, facilitates better generalization on real noisy fingerprints.

3.3 Data Preparation for Learning Auxiliary Tasks

The auxiliary tasks are introduced to align the domains of synthetically distorted and
real low quality fingerprints. However, as the annotations of real fingerprints are un-
available, the learning of auxiliary tasks is conducted using pseudo-annotations (see
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Supervised Task

Rotation
Classification

Fingerprint
Denoising

Position
Prediction


Synthetic
Fingerprints


(Source)

Real
Fingerprints


(Target)

Fingerprint Denoising

          Backbone
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Auxiliary Task 1
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(1,1)

Auxiliary Task 2
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Fig. 3 Flowchart depicting proposed domain alignment using two auxiliary tasks. A multi-task learning
mechanism is exploited such that fingerprint denoising is learnt using a synthetic annotated training set
(source). Additionally, the model also learns to predict rotation and location on unlabelled real (target) and
synthetic (source) fingerprints using pseudo-annotations. As a common fingerprint denoising backbone
model is used for auxiliary tasks on both the domains, the model learns to align features of synthetic and
real fingerprints.

Figure 2). For learning the rotation prediction task, the input fingerprint samples are
rotated in increments of 90°, i.e. {0°, 90°, 180°, 270°}. Let the transformed source
dataset for learning to predict rotation is represented by Trot(Xsrc) = {(trot(xsrc), yrot)}.
Similarly, the transformed target dataset for learning to predict rotation is represented
by Trot(Xtgt) = {(trot(xtgt), yrot)}.

Next, for learning the patch location prediction task, random patches are cropped
from the input fingerprint image. The location prediction task is defined to predict the
quadrant from which the patch is cropped. It is a two-dimensional regression problem
in with pseudo-annotations defined as {(0,0), (1,0), (0,1), (1,1)}. Let the transformed
source dataset for learning to predict patch location is represented by Tloc(Xsrc) =
{(tloc(xsrc), yloc)}. Similarly, the transformed target dataset for learning to predict
rotation is represented by Tloc(Xtgt) = {(tloc(xtgt), yloc)}.
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Notation Description

Xsrc Source data distribution
Xtgt Target data distribution
Trot Distribution of rotation transformation
yrot Ground truth rotation label
Tloc Distribution of location transformation (patch extraction)
yloc Ground truth location label
trot A given rotation transformation
tloc A given location transformation

(xsrc, ysrc) An annotated sample from the source dataset
xtgt An unannotated sample from the target dataset

(xrot, yrot) Input x rotated at angle yrot
(xloc, yloc) Image patch extracted from input x from pixel location yloc

θ Model parameters till the penultimate layer
α Model parameters of the last layer of the backbone model
β Model parameter of the rotation prediction branch
γ Model parameter of the location prediction branch

ψ(θ(x);α) Denoised fingerprint output for an input x
ψ(θ(x);β) Predicted rotation for an input x
ψ(θ(x); γ) Predicted location for an input x

γ Model parameter of the location prediction branch
Lbs Baseline fingerprint denoising loss
Lrot Rotation prediction loss
Lloc Location prediction loss

Table 2 Table summarizing the mathematical symbols used in the paper.

3.4 Multi-Task Fingerprint Denoising using Auxiliary Tasks

To align domains of synthetic and real fingerprints, the backbone fingerprint denois-
ing model is modified as a multi-task learning model (see Figure 3). Let the model
parameters of the backbone fingerprint denoising model be represented by {θ, α},
where θ represents the model parameters till the penultimate layer and α denotes the
parameters of the last layer. Model parameters of the rotation and patch location pre-
diction networks are represented by β and γ, respectively. For an input fingerprint
x, the corresponding denoised fingerprint, predicted rotation and location are repre-
sented by ψ(θ(x);α), ψ(θ(x);β) and ψ(θ(x); γ) respectively. Let Lbs represents the
denoising loss of the baseline fingerprint denoising model. Fingerprint denoising task
is learnt using only the source dataset by minimizing Lbs.

Lbs(Xsrc; θ, α) =
∑

(xsrc,ysrc)∈Xsrc

Lbs(ψ(θ(xsrc);α), ysrc) (1)
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Let Lrot represents the cross-entropy loss function used to train the auxiliary
rotation task. Rotation task is learnt using the transformed source and target dataset
by minimizing Lrot.

Lrot(Xsrc, Xtrgt; θ, β) =
∑

(xrot,yrot)∈Trot(Xsrc)

Lrot(ψ(θ(xrot);β), yrot)+

∑
(xrot,yrot)∈Trot(Xtgt)

Lrot(ψ(θ(xrot);β), yrot)
(2)

Similarly, Let Lloc represents the regression based loss function used to train the
auxiliary patch location prediction task. Location prediction task is learnt using the
transformed source and target dataset by minimizing Lloc.

Lloc(Xsrc, Xtrgt; θ, γ) =
∑

(xloc,yloc)∈Tloc(Xsrc)

Lloc(ψ(θ(xloc); γ), yloc)+

∑
(xloc,yloc)∈Tloc(Xtgt)

Lloc(ψ(θ(xloc); γ), yloc)
(3)

Note that the baseline fingerprint denoising task is trained using
Lbs(Xsrc; θ, α) and takes only the annotated source dataset as the input. On the
other hand, both the auxiliary tasks of rotation and location prediction trained us-
ing Llrot(Xsrc, Xtrgt; θ, β) and Lloc(Xsrc, Xtrgt; θ, γ) respectively take pseudo-
annotated data corresponding to both the source and target domains as the input.
Joint training of the three loss functions enforces domain alignment. The total loss
minimized by the fingerprint denoising model is formalized as:

arg min
(θ,α,β,γ)

[Lbs(Xsrc; θ, α) + Lrot(Xsrc, Xtrgt; θ, β) + Lloc(Xsrc, Xtrgt; θ, γ)] (4)

For an input fingerprint x, for inference during test-time, the sub-networks per-
taining to the auxiliary tasks are discarded, and only the output of the fingerprint
denoising task, i.e., ψ(θ(x);α) is used. In this paper, as suggested in Section 3, we
modify the backbone fingerprint denoising model, FP-E-GAN [24] and propose DA-
GAN (Domain Aligned GAN).

4 Implementation Details

We proceed to elaborate the network design of DA-GAN. Figure 4 illustrates different
convolution blocks constituting the fingerprint denoising model as well as branches
for auxiliary tasks, rotation and location prediction. Details on the convolution layer
characteristics and activation functions is provided in Table 3 and Table 4. The syn-
thetic noisy and corresponding good quality fingerprints are obtained as per guide-
lines provided in [23,24]. The source code of DA-GAN is implemented in PyTorch,
v1.11.0. Adam optimizer with a learning rate of 0.0002 is used to optimize the loss
function of DA-GAN. Training of DA-GAN is conducted on four NVIDIA GTX
1080 Ti GPUs and a E5-2620v4 CPU. Each GPU has a 11 GB RAM.
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Fig. 4 Network architecture of DA-GAN.

Block Kernels Size Stride Padding Layers
Conv1 64 7 1 3 Conv. Layer + Batch Norm + ReLu
Conv2 128 3 2 1 Conv. Layer + Batch Norm + ReLu

+ Conv. Layer + Batch Norm
Conv3 256 3 2 1 Conv. Layer + Batch Norm + ReLu

+ Conv. Layer + Batch Norm
ResNet
Block

256 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

Deconv1 128 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

Deconv2 64 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

Conv4 1 7 1 3 Conv. Layer + Tanh
ConvR-
1

64 3 1 1 Conv. Layer + Batch Norm + ReLu

ConvR-
2

128 3 1 1 Conv. Layer + Batch Norm + ReLu

ConvR-
3

64 1 1 0 Conv. Layer + Batch Norm + ReLu

ConvP 64 1 1 0 Adaptive Pooling + Conv. Layer

Table 3 Network architecture of the generator module of DA-GAN.

Block Kernels Size Stride Padding Layers
Conv5 64 4 2 1 Conv. Layer + LeakyReLu
Conv6 128 4 2 1 Conv. Layer + Batch Norm +

LeakyReLu
Conv7 256 4 2 1 Conv. Layer + Batch Norm +

LeakyReLu
Conv8 512 4 1 1 Conv. Layer + Batch Norm +

LeakyReLu
Conv9 1 4 1 1 Conv. Layer

Table 4 Network architecture of the discriminator module of DA-GAN.



12 Indu Joshi1,2,⋆ et al.

5 Experimental Evaluation

5.1 Databases

Noise in fingerprint images typically originates from structured noise in the back-
ground or poor skin quality of fingertips. To assess the fingerprint denoising perfor-
mance under complex background, the fingerprint denoising performance on latent
fingerprints is studied. Furthermore, to study the fingerprint denoising performance
under poor skin quality co-variates, the proposed fingerprint denoising model is eval-
uated on two poor quality fingerprints databases obtained from rural Indian subjects.
Next, we share details on these databases.

1. IIITD-MOLF [49]: IIITD-MOLF is the largest latent fingerprint database in the
public domain with 4400 latent fingerprint images. Latent fingerprints in the
dataset are used as the probe set, while the fingerprints acquired through the multi-
spectral sensor is used as the gallery set.

2. Rural Indian Fingerprint database [44]: This database contains fingerprint sam-
ples of the rural Indian population involved in excessive manual work. The vol-
unteers for database collection comprise farmers, carpenters, and villagers. This
database constitutes ten impressions per finger with a total of 1631 fingerprint
images.

3. A private rural fingerprint database acquired from elderly rural Indian population
and population with severely poor fingertip quality. This database constitutes two
impressions per finger with a total of 1000 fingerprint images.

5.2 Evaluation Metrics

1. Fingerprint Quality Scores: A fingerprint denoising model is introduced in a auto-
mated fingerprint recognition pipeline to improve the clarity of ridges and valleys.
Therefore, one of the evaluation metrics we use in this study is to evaluate the fin-
gerprint quality of the denoised fingerprint image. The fingerprint quality score is
obtained using NBIS [42], an open source tool provided by the national institute
of standards and technology (NIST).

2. Fingerprint Matching Performance: A fingerprint denoising model is required to
generate fingerprint images that obtain higher match scores on genuine matches,
thus better matching performance. Towards evaluating the improvement in match-
ing performance, we compare cumulative matching characteristics (CMC) curves
for latent fingerprints and average equal error rate (EER) for both the rural In-
dian fingerprint databases. Standard fingerprint matching tools, Bozorth [42] and
MCC [4], [3] and [11] are used to perform fingerprint matching.
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Input STFT Hong DeConvNet FP-E-GAN DA-GAN

Fig. 5 Existing fingerprint denoising models perform worse than DA-GAN in predicting unclear and miss-
ing ridge details due to dry and wet fingertips or creases and scars.

Denoising Algo-
rithm

Avg. Quality
Score (↓)

Raw Image 2.94
STFT [7] 2.86
Hong et al. [18] 2.05
DeconvNet [51] 1.95
FP-E-GAN [24] 1.31
DA-GAN 1.28

Table 5 Average fingerprint quality scores ob-
tained on the rural Indian fingerprint database
[44]. The results indicate that improved quality
denoised fingerprints are obtained after intro-
ducing the proposed domain alignment frame-
work.

Denoising Algo-
rithm

Bozorth
(↓)

MCC
(↓)

Raw Image 16.36 13.23
STFT [7] 18.13 14.52
Hong et al. [18] 11.01 11.46
DeConvNet [51] 10.93 10.86
FP-E-GAN [24] 7.30 5.96
DA-GAN 6.10 5.31

Table 6 Average EER obtained on the rural Indian finger-
print database [44] using Bozorth and MCC matchers. The
results indicate that improved fingerprint matching perfor-
mance is obtained after introducing the proposed domain
alignment framework.

6 Comparison with State-of-the-art

6.1 Performance on Rural Indian Fingerprints

Figure 5 contrasts state-of-the-art fingerprint denoising algorithms with DA-GAN.
These results demonstrate that the proposed DA-GAN is able to predict unclear and
missing ridge details due to dry and wet fingertips or creases and scars. Thus, fa-
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Fig. 6 (a) Histogram of fingerprint quality scores and DET curves for (b) Bozorth (c) MCC. On the
rural Indian fingerprint database [44], DA-GAN greatly outperforms contemporary fingerprint denoising
techniques.

Denoising Algo-
rithm

Avg. Quality
Score (↓)

DeConvNet [51] 4.12
FP-E-GAN [24] 2.28
DA-GAN 1.94

Table 7 Average fingerprint quality scores
scores obtained on the private rural fingerprint
database.

Denoising Algo-
rithm

Bozorth
(↓)

MCC
(↓)

DeConvNet [51] 28.75 26.80
FP-E-GAN [24] 17.06 15.85
DA-GAN 11.53 9.70

Table 8 Average EER obtained on the private rural Indian
fingerprint database.
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Fig. 7 (a) Histogram of fingerprint quality scores and DET curves for (b) Bozorth (c) MCC. On the
private rural Indian fingerprint database, DA-GAN greatly outperforms contemporary fingerprint denoising
techniques.

cilitating improved fingerprint matching performance. We now present a quantitative
analysis of the findings from the rural Indian fingerprint database. Table 5 reports that
the average fingerprint quality scores has improved from 1.31 to 1.28 after domain
alignment (lower quality scores indicates better fingerprint quality scores). These re-
sults demonstrate that the proposed domain alignment framework helps to obtain
better fingerprint denoising performance on challenging rural Indian fingerprints.

Next, to quantify the improvement in matching performance, Table 6 reports that
the average EER has improved from 7.30 to 6.10 for Bozorth matcher and 5.96 to
5.31 for MCC matcher. Corresponding histogram of fingerprint quality scores and
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Input DeConvNet FP-E-GAN DA-GAN

Fig. 8 Sample cases demonstrating improved fingerprint denoising ability of DA-GAN in contrast to state-
of-the-art on the IIITD-MOLF database.

Denoising Algo-
rithm

Avg. Quality
Score (↓)

Raw Image 4.96
DeConvNet [51] 4.09
FP-E-GAN [24] 1.91
DA-GAN 2.03

Table 9 Average fingerprint quality scores ob-
tained on the IIITD-MOLF database.

Denoising Algo-
rithm

Bozorth
(↑)

MCC
(↑)

Raw Image 5.45 6.06
DeConvNet [51] 14.02 14.27
Svoboda et al. [55] NA 22.36
FP-E-GAN [24] 28.52 34.43
DA-GAN 29.61 36.06

Table 10 Rank-50 accuracy obtained on the IIITD-MOLF
database.

detection error tradeoff (DET) curves are plotted in Figure 6 (a) and Figure 6 (b)-
(c) respectively. Similar trends are reported for the private rural Indian fingerprint
database in which the average EER has improved from 17.06 to 11.53 for Bozorth
matcher and 15.85 to 9.70 for MCC matcher. Corresponding results are reported in
Table 7, Table 8 and Figure 7.

6.2 Performance on Latent Fingerprints

We demonstrate that the domain alignment of fingerprint denoising models gener-
alizes on latent fingerprints. Sample denoised fingerprints obtained by the proposed
DA-GAN are compared to the state-of-the-art in Figure 8. DA-GAN generates fewer
spurious ridge patterns in the background and unclear fingerprint image regions com-
pared to the state-of-the-art. Next, we quantify the improvement in fingerprint de-
noising performance. We find that the rank-50 identification accuracy improves from
28.52 to 29.60 on the Bozorth fingerprint matcher and from 34.43 to 36.06 on the
MCC matcher, after proposed domain alignment. We find that the fingerprint quality
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Fig. 9 Comparison of fingerprint denoising performance obtained by the proposed DA-GAN and state-
of-the-art on the IIITD-MOLF database: (a) histogram of fingerprint quality scores; identification perfor-
mance characterized by CMC curves using fingerprint matching tools (b) Bozorth (c) MCC.

Input DU-GAN MU-GAN DA-GAN

Fig. 10 Sample denoised fingerprints from the IIITD-MOLF database comparing the proposed DA-GAN
with recent GAN based fingerprint denoising models.

is also competitive to the baseline. Fingerprint quality scores and rank-50 accuracy
are reported in Table 9 and Table 10 respectively. Figure 9 shows the respective his-
tograms of fingerprint quality scores and CMC curves. These results clearly establish
the fact that domain alignment helps to improve the performance of a fingerprint
denoising model.

6.3 Comparison with Recent GAN based Fingerprint Denoising Models

Proposed DA-GAN significantly outperforms recently proposed generative adversar-
ial network (GAN) based state-of-the-art fingerprint denoising models. Denoised fin-
gerprints generated by the proposed DA-GAN obtain the highest rank-50 accuracy
on both the fingerprint matchers. Although MU-GAN [27] obtains better average fin-
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Denoising Algo-
rithm

Avg. Quality
Score (↓)

Cycle-GAN [33] 4.90
DU-GAN [30] 3.01
MU-GAN[27] 1.48
DA-GAN 2.03

Table 11 Comparison of average fingerprint
quality scores obtained by the proposed DA-
GAN and recent GAN based state-of-the-art
fingerprint denoising models on the IIITD-
MOLF database.

Denoising Algo-
rithm

Bozorth
(↑)

MCC
(↑)

Cycle-GAN [33] 6.29 4.65
DU-GAN [30] 23.16 27.21
MU-GAN [27] 25.09 28.61
DA-GAN 29.61 36.06

Table 12 Rank-50 accuracy obtained by the proposed DA-
GAN and recent GAN based state-of-the-art fingerprint
denoising models on the IIITD-MOLF database.
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Fig. 11 Comparison of fingerprint denoising performance obtained by the proposed DA-GAN and the
recent GAN based fingerprint denoising models on the IIITD-MOLF database: (a) histogram of fingerprint
quality scores; identification performance characterized by CMC curves using fingerprint matching tools
(b) Bozorth (c) MCC.

gerprint quality scores as compared to the proposed DA-GAN; however, this is due
to the limitation of the fingerprint quality assessment tool provided by NBIS [42].
Figure 10 compares the samples generated by the proposed DA-GAN with the state-
of-the-art. These samples demonstrate that MU-GAN sometimes does not reconstruct
the fingerprint ridge details on poor quality fingerprint regions, as opposed to the pro-
posed DA-GAN. Poor ridge smoothness on such reconstructed ridges attributes to the
second-best fingerprint quality scores obtained by the proposed DA-GAN. However,
since the minutiae details are preserved while denoising such poor quality fingerprint
regions, the proposed DA-GAN achieves the highest rank-50 accuracy (see Table 11,
Table 12 and Figure 11).

6.4 Comparison of Computational Complexity

We begin the comparison of computational complexity of the proposed DA-GAN
with state-of-the-art (hyperparameters reported in Table 13) by comparing the model
capacity characterized by number of model parameters. As reported in Table 14,
Cycle-GAN has the highest number of model parameters which makes it prone to
overfitting and poor generalization. MU-GAN hs the least number of parameters,
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Denoising
Algorithm

Learning Rate Batch Size

Cycle-GAN [33] 0.0002 1
DU-GAN [30] 0.0002 2
MU-GAN [27] 0.0002 2
DA-GAN 0.0002 1

Table 13 Hyperparameters for the proposed DA-GAN and recent GAN based state-of-the-art fingerprint
denoising models.

Denoising
Algorithm

Model Parameters
(in millions)

Cycle-GAN [33] 114.32
DU-GAN [30] 14.16
MU-GAN [27] 14.14
DA-GAN 15.33

Table 14 Comparison of model parameters of the pro-
posed DA-GAN and recent GAN based state-of-the-art fin-
gerprint denoising models.

Denoising
Algorithm

GFLOPS

Cycle-GAN [33] 168.26
DU-GAN [30] 237.54
MU-GAN [27] 238.28
DA-GAN 277.12

Table 15 Comparison of GFLOPS required by
the proposed DA-GAN and recent GAN based
state-of-the-art fingerprint denoising models.

however the models parameters of the proposed DA-GAN is competitive to MU-
GAN with far better denoising ability, which confirms the superiority of the proposed
DA-GAN.

Next, we compare the computational head of the proposed DA-GAN with state-
of-the-art by comparing the number of GFLOPS. As reported in Table 15, Cycle-
GAN has the lowest computational overhead, however the least denoising capabil-
ity. DA-GAN has the highest computational complexity. However, the computational
overhead of DA-GAN is competitive to DU-GAN and MU-GAN while providing the
best denoising performance. These results demonstrate the efficacy of the proposed
DA-GAN over state-of-the-art.
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Input DA-GANGroundTruth

SSIM 88.30

SSIM 81.03

SSIM 90.86

Fig. 12 Sample synthetic test cases illustrating the ridge preservation ability of DA-GAN.

7 Model Analysis

7.1 Ridge Preservation Ability

A low quality fingerprint image is characterized by the presence of structured noise in
the background or blurred ridges. A fingerprint denoising model is required to elim-
inate noise while preserving ridge details. Figure 12 demonstrates that a high struc-
tural similarity index metric (SSIM) between the denoised fingerprint and the ground
truth is obtained for DA-GAN. These results demonstrate that the proposed DA-GAN
preserves ridge details of fingerprints including ridge orientation and minutiae while
denoising them.

Auxiliary Task Avg. Quality
Score (↓)

Baseline 1.31
Rotation 1.34
Location 1.37
Both 1.28

Table 16 Average fingerprint quality scores
obtained on the rural Indian fingerprint
database for the ablation study.

Auxiliary Task Bozorth
(↓)

MCC
(↓)

Baseline 7.30 5.96
Rotation 6.67 5.82
Location 6.73 5.70
Both 6.10 5.31

Table 17 Average EER obtained on the rural Indian fin-
gerprint database for the ablation study.
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Input Baseline Rotation Location Both

Fig. 13 Sample cases comparing the impact of each auxiliary task.
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Fig. 14 (a) Histogram of fingerprint quality scores and DET curves for (b) Bozorth (c) MCC. Fingerprint
denoising performance is improved on the rural Indian fingerprint database [44] after introducing each
auxiliary task: location and rotation prediction. As expected, best fingerprint denoising performance is
obtained after introduction of both the auxiliary tasks.

7.2 Significance of Each Auxiliary Task

Next, we investigate the individual contribution of each auxiliary task in facilitating
domain alignment and, subsequently, improved fingerprint denoising performance.
Samples presented in Figure 13 demonstrate that the fingerprint denoising perfor-
mance of the baseline (FP-E-GAN) fingerprint denoising model improves by intro-
ducing either of the auxiliary task, location, or rotation prediction. Location predic-
tion turns out to be more significant compared to rotation prediction. However, the
introduction of both the auxiliary tasks renders the best fingerprint denoising perfor-
mance. Improved fingerprint quality scores and matching performance are obtained
after the introduction of the auxiliary tasks, as reported in Table 16 and Table 17. The
corresponding histogram of fingerprint quality scores and DET curves are plotted in
Figure 14.
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Fig. 15 Sample successful fingerprint denoising cases for the proposed DA-GAN.

7.3 Successful Cases

Figure 15 demonstrates successful sample cases of fingerprint denoising by DA-
GAN. We observe that DA-GAN successfully predicts missing ridge details due to
creases or smudged ridge patterns. Similarly, for fingerprint samples with unclear
valley details due to thick ridges or samples with non-uniform chemical powder, the
proposed DA-GAN successfully executes fingerprint denoising. These outcomes il-
lustrate the generalization of DA-GAN on challenging latent and rural Indian finger-
prints.

7.4 Challenging Cases

Figure 16 contrasts the denoised fingerprints output by DA-GAN with the ones ob-
tained using existing fingerprint denoising models on challenging samples. The first
row depicts that the proposed DA-GAN predicts spurious ridge patterns around the
scarred fingerprint region. The second row depicts dark ridges in fingerprint regions
with high pressure. Around high-pressure regions, DU-GAN predicts non-smooth
and spurious ridges. However, in all the presented cases, denoising ability of DA-
GAN is superior to state-of-the-art and the baseline FP-E-GAN. These results con-
firm that the proposed unsupervised domain alignment improves fingerprint denois-
ing performance.
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Input STFT Hong DeConvNet FP-E-GAN DA-GAN

Fig. 16 Comparison of the proposed DA-GAN with state-of-the-art fingerprint denoising models on chal-
lenging samples.

8 Conclusion

This research highlights the limitation in the generalization ability of state-of-the-art
fingerprint denoising models due to training on synthetic data. To counter the domain
shift that exists between synthetically distorted and real low quality fingerprints, this
research proposes multi-task learning using two auxiliary tasks, rotation and loca-
tion prediction. Results reveal that the proposed unsupervised domain alignment im-
proves the performance of a fingerprint denoising model. However, we find that there
is further scope to improve denoising performance in significantly noisy fingerprint
regions (discussed in Section 7.4) by exploiting contextual information. In future, the
proposed domain alignment technique can be exploited to reduce the domain gap ob-
served during other stages of an automated fingerprint recognition system, such as
region of interest segmentation and presentation attack detection.
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