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Abstract—Automated Image classification has seen substantial
growth in recent times. However, several applications suffer
from the limited availability of training data, such as the
classification of medical images, where data collection is mostly
limited by privacy concerns of human subjects. As a result, to
compensate for the limited availability of training data, most of
these applications employ custom-made lightweight architectures.
While state-of-the-art deep models for computer vision appli-
cations usually exploit architectures with huge model capacity.
However, the increase in model complexity and size necessarily
doesn’t guarantee better performance on small medical datasets.
We study this phenomenon in the context of medical images,
where several existing studies report that most sophisticated
deep networks for computer vision trained on large datasets
such as Image Net do not generalize on medical image appli-
cations, due to huge model capacity, subsequently leading to
overfitting on smaller training datasets. In this research, we
exploit explainable artificial intelligence to analyze the features
learned by state-of-the-art deep models for smaller medical
image training datasets and contrast them with the features
learned for larger medical training datasets. In particular,
we exploit Shapley Additive explanations (SHAP) features to
perform a qualitative comparison of feature relevance maps
and understand how different standard models when trained
with different training sizes understand discriminative image
patterns to perform classification. Furthermore, we also compare
SHAP features on scenarios in which the same model focuses
on images belonging to different classes. Experiments on two
datasets of different sizes have been presented to understand the
dependence of model complexity on the number of samples in the
training dataset. Results demonstrate that simpler models learn
generalizable SHAP features that allow them to perform better
on small datasets, unlike larger models when trained on smaller
datasets. Likewise, bigger models when trained on larger datasets
learn more distinctive and diverse features that allow them to
outperform smaller models.
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I. INTRODUCTION

Image classification caters to a broad category of problem
statements. From robotics to security, image classification
plays an important role in a plethora of applications. With
the shift to learnable methods, it is one of the prominent
areas that has seen a major performance boost with the
advancements of deep models in computer vision. Across the
last few years, models have progressed from simple machine
learning algorithms to convolutional neural networks [1]—[3]
to transformer architectures [4]. Multiple variants of these
architectures have been proposed and compared on standard
in-the-wild datasets like ImageNet [5] which are generally
large in size. Based on these comparisons, these models are
deemed to be state-of-the-art across multiple subdomains of
computer vision and its applications.

Focusing on domain-specific problems, a lot of research
targets very specific datasets and environments. There is a
massive amount of research that is needed to adapt these
proposed models from one subdomain to another, even in the
same application field [6]-[8]. This creates a gap between
the standard and specific models and there is a lack of
understanding of what general model can be used on a new
problem statement without domain-specific research.

In order to study how standard networks perform on
different sizes of datasets from an application domain, we
take medical image classification as a case study. Medical
Image classification [9] is a branch of computer vision that
caters to equipping models to perform classification tasks on
medical datasets which are mostly different from natural image
datasets. There exist various different types of classification
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Fig. 1. Flowchart presenting the proposed method. SHAP features are obtained from a pre-trained deep classification model. SHAP deep explainer model is
trained on 10% test images in an unsupervised manner. More precise features are obtained for a shallower model when the dataset is small and more precise

features are obtained for a deeper model when the dataset is larger.

problems wherein, the data exhibits low intra and inter class
variance. This makes adapting domain-specific models even
harder and a need for analysis on what standard model works
better in what kind of scenarios is much needed.

Research Contribution: On a mission to understand the
effect of model capacity on training dataset size, in this
paper, we choose three standard and common architectures and
perform simple classification on Cancer [10] and Pneumonia’
datasets. We compare the performance of our models and
analyze their SHAP [11] feature maps to understand the focus
on the model and how it learns from the images. Then, we
compare the SHAP values and determine how these models
act differently on datasets of different sizes. Through this
experimentation, we develop an understanding of how to
choose the best network out of the various standard models
for a certain problem statement.

II. LITERATURE REVIEW
A. Medical Image Classification

Image classification using machine learning algorithms like
SVM [12], K-NN [13] and more was a forward step that
helped improve the performance on many datasets. Due to the
simple nature of these algorithms, there was a need to use more
complex models like neural networks [14]. With the proposal
of Convolutional Neural Networks like AlexNet [15] and VGG
[16], a massive improvement in classification was seen as
these models were designed to do well with natural images.

Uhttps://www.kaggle.com/datasets/paultimothymooney/chest-xray-
pneumonia

Further improvements were seen in form of the introduction of
residual connections in ResNet [17] and ResNext [18]. Further,
using attention in vision models allowed networks to attend to
important regions of an image [19], [20].

Medical image classification umbrellas a plethora of prob-
lems like COVID detection [21], Cancer classification [22] and
more. Various models based on CNNs have also been proposed
to solve such problems like [23], [24]. Even models like
[25] have been experimented with to improve performance.
A common problem with all these networks is that they are
proposed for specific datasets under controlled conditions [26]
and require revisions when being adapted to new medical
problems or datasets.

B. Explainable Artificial Intelligence (XAI)

Deep models are generally black box and therefore, unsafe
for real applications. XAl aims at introducing interpretability
and transparency in deep models. Various XAl technqgiues are
proposed in the literature. Among those, Grad-CAM [27]-[30]
is a commonly used too to visualize salient image regions by
backpropagation of the gradients. Quantification of uncertainty
is a important XAl technique to understand model’s confidence
in prediction and noisy input regions [31]-[33]. LIME [34]
suggests that a model can also be explained by perturbing an
input and see how the output changes. SHAP [11] is a XAI
tool to understand the marginal contribution of a feature in a
deep model’s performance.

Motivated by the XAI methods and to study how size
training dataset affects features learnt by a deep model, we
use SHAP feature maps to compare how the model relatively



understands important information from different parts of an
input image. This helps us perform a fruitful analysis and
support our experimental results.

III. PROPOSED METHOD

For this study, we begin with three state-of-the-art deep
architectures that are pre-trained on ImageNet dataset [5]:
ResNet [17] that uses residual connections; ResNeXt [18] uses
cardinality as a new dimension in addition to the dimensions of
depth and width and Swin Transformer [4] uses the attention
locally then at a global scale, it makes Swin Transformer more
computationally fast. Swin Transformer shows the highest
accuracy on the ImageNet dataset, followed by ResNeXt and
then ResNet.

We trained all three architectures on the two medical
datasets (described in Section IV) in a supervised manner.
After training these models for the classification task, we
compute SHAP values to look for the features identified by
the models during classification. However, as presented in
Figure 1, to obtain the explainable feature map from SHAP,
we provide 10% unannotated test images to train the deep
explainer model of SHAP. With the help of SHAP, we can
calculate the marginal contribution of each pixel in the given
test image, also known as shaply values. By doing so, we get
two feature maps belonging to each class and the same size as
the input image. The SHAP feature map consists of blue and
red pixels distributed throughout the image. Here, red coloured
pixeled region signifies the essential or main features that the
trained classifier use for the correct classification. At the same
time, the blue pixeled region defines the features that push the
classifier to make the incorrect classification. These features
are the supporting results in our hypothesis that the complex
model fails for small medical datasets.

IV. DATASETS

To demonstrate our findings, we have used datasets from
two medical imaging modalities (i) The Breast Cancer
Histopathological Image Classification (BreakHis) [10] and
(i) Chest X-Ray images of pneumonia patients. For both
datasets, we have two different classes, malignant and benign
for breast cancer and normal and pneumonia for chest X-Ray.

(I) The Breast Cancer dataset (BreakHis): It contains 9,109
microscopic images of 40X, 100X, 200X, and 400X magnify-
ing scales. Breast tumour tissue is collected from 82 different
breast cancer patients. To make our study more specific, we
only use a 200x magnifying factor for training and testing.
Hence the final number of samples used for training and testing
are 1,923 from which 608 are benign, and 1,315 are malignant
samples.

(I) The Chest X-Ray images of pneumonia patients: It
consists of 5,863 chest X-Ray images with two different
categories, i.e., Pneumonia and Normal. Where the number of
Pneumonia images are 4,273 while number of Normal images
are 1,583.

V. RESULTS
A. Results on Larger Dataset

In this section, we will be comparing the classification
performance of different state-of-the-art deep architectures,
i.e., ResNet, ResNeXt and Swin Transformer, on a larger
dataset called Chest X-Ray Pneumonia dataset with 5,863 total
samples.

From Figure 2, we can see the classification accuracy

increase with respect to the model capacity. For ResNet, the
classification accuracy is around 86.7%, increasing to 88.5%
when we use ResNeXt.With the use of Swin Transformer,
classification accuracy is highest at 91%. These results demon-
strate that the classification accuracy increases with the parallel
increase of model capacity for the larger dataset.
To further support our hypothesis, we use SHAP to generate
the feature maps for all the architectures. In Fig. 3(a), We
can see the SHAP feature map of a given pneumonia sample
generated using Swin Transformer, it is pretty accurate, and
the red pixel intensity is also relatively high at a scale of
0.15. This signifies that Swin Transformer can find the best
relevant features during the classification. In contrast, the red
pixel intensity for ResNeXt(shown in Fig. 3(b)) is lower than
Swin Transformer but higher than ResNet, i.e. 0.04, and the
features are not as accurate as Swin Transformers. In the case
of ResNet((shown in Fig. 3(c))), the red pixel intensity is
lowest, which means low confidence, and the feature map is
quite distorted and highlights the irrelevant features.

B. Results on Smaller Dataset

In contrast to the above conclusion, the classification ac-
curacy decreases concerning model capacity with a smaller
dataset, i.e., The Breast Cancer Histopathological Image, with
only 1,923 samples for training and testing.

From Fig. 2, we can see the classification accuracy with
respect to model capacity. For ResNet, the classification ac-
curacy is around 95.4%, decreasing to 94.3% when we use
ResNeXt.With the use of Swin Transformer, classification
accuracy is lowest at 92%. These results demonstrate that the
classification accuracy decreases with the parallel increase of
model capacity for the larger datasets.

To further support our hypothesis, we use SHAP to generate
the feature maps for all the architectures. In Fig. 4(a), We can
see the SHAP feature map of a given malignant sample for
ResNet50 is quite crisp, and features have more confidence
in their prediction, specified by the dark red pixels with a
maximum value of 0.2. whereas the red pixel intensity for
ResNeXt(shown in Fig. 4(b)) is lower, i.e., 0.10, and the
features are not uniform, the model cannot find the opti-
mal features during the classification. In Swin Transformer’s
case((shown in Fig. 4(c))), despite high red pixel intensity, the
feature map is distorted and highlights irrelevant features or
backgrounds.

C. Class-wise Features

To gain further insight into our proposed hypothesis, We
generated the SHAP feature maps for classes belonging to



Normal images in the Chest X-Ray dataset and Benign in the
case of the Breast cancer dataset.

In Fig. 5, we can see the more complex architectures can also
generate a better SHAP feature map for the Normal X-Ray
sample. The uniformity and precision of the features generated
by Swin Transformer (shown in Fig. 5(a)) are a little bit better
than ResNeXt’s (shown in Fig. 5(b)) feature map and a lot
more accurate than ResNet(shown in Fig. 5(c)) one.
Similarly, In Fig. 6, we can see that the more complex
architectures can not generate a better SHAP feature map
for Benign cancer Samples. the uniformity and precision
of ResNet(shown in Fig. 6(a)) is a little bit better than
ResNeXt(shown in Fig. 6(b)) feature map and a lot accurate
than Swin Transformer(shown in Fig. 6(c)).
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Fig. 2. Performance of models on Cancer and Pneumonia datasets
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Fig. 3. SHAP feature map for pneumonia x-ray samples for different models
(a)Swin Transformer, (b)ResNeXt and (c)ResNet.
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Fig. 4. SHAP feature map for malignant breast cancer samples for different
models (a)ResNet, (b)ResNeXt, and (c)Swin Transformer.
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Fig. 5. SHAP feature map for normal x-ray samples for different models
(a)Swin Transformer, (b)ResNeXt and (c)ResNet.
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Fig. 6. SHAP feature map for benign breast cancer samples for different
models (a)ResNet, (b)ResNeXt and (c)Swin Transformer.

VI. CONCLUSION

From the study performed, we can conclude that the stan-
dard models cannot be generally stated to be state-of-the-art
and the most appropriate model that should be used is depen-
dent on the nature of a problem statement. Whilst, complex
models successfully beat their predecessors on datasets with
enough data samples, simpler models perform relatively better
on datasets of smaller size. This is by the virtue of their
inability to focus on regions of important information in a
precise manner as seen in the SHAP feature maps obtained
from these models. Due to the increased complexity and extra
parameters, the advanced models suffer on smaller datasets.
This proves that when choosing a model for a new problem,
there is a need to identify which model shall perform the best
irrespective of its ability on large in-the-wild datasets. Further,
this reduces the need to perform domain-specific research until
absolutely necessary.
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